Secure domination and secure total domination in graphs
نویسندگان
چکیده
A secure (total) dominating set of a graph G = (V, E) is a (total) dominating set X ⊆ V with the property that for each u ∈ V − X , there exists x ∈ X adjacent to u such that (X − {x}) ∪ {u} is (total) dominating. The smallest cardinality of a secure (total) dominating set is the secure (total) domination number γs(G) (γst(G)). We characterize graphs with equal total and secure total domination numbers. We show that if G has minimum degree at least two, then γst(G) ≤ γs(G). We also show that γst(G) is at most twice the clique covering number of G, and less than three times the independence number. With the exception of the independence number bound, these bounds are sharp.
منابع مشابه
Inverse and Disjoint Secure Total Domination in Graphs
Let G = (V, E) be a graph. Let D be a minimum secure total dominating set of G. If V – D contains a secure total dominating set D' of G, then D' is called an inverse secure total dominating set with respect to D. The inverse secure total domination number γst(G) of G is the minimum cardinality of an inverse secure total dominating set of G. The disjoint secure total domination number γstγst(G) ...
متن کاملSecure Restrained Domination in the Join and Corona of Graphs
Let G be a connected simple graph. A restrained dominating set S of the vertex set of G, V (G) is a secure restrained dominating set of G if for each u ∈ V (G) \ S, there exists v ∈ S such that uv ∈ E(G) and the set (S \ {v}) ∪ {u} is a restrained dominating set of G. The minimum cardinality of a secure restrained dominating set of G, denoted by γsr(G), is called the secure restrained dominatio...
متن کاملEdge criticality in secure graph domination
The domination number of a graph is the cardinality of a smallest subset of its vertex set with the property that each vertex of the graph is in the subset or adjacent to a vertex in the subset. This graph parameter has been studied extensively since its introduction during the early 1960s and finds application in the generic setting where the vertices of the graph denote physical entities that...
متن کاملSecure Edge Domination in Graphs
Let G = (V, E) be a graph without isolated vertices. A secure edge dominating set of G is an edge dominating set F⊆E with the property that for each e ∈ E – F, there exists f∈F adjacent to e such that (F – {f}) ∪ {e} is an edge dominating set. The secure edge domination number γ's(G) of G is the minimum cardinality of a secure edge dominating set of G. In this paper, we initiate a study of the ...
متن کاملTOTAL DOMINATION POLYNOMIAL OF GRAPHS FROM PRIMARY SUBGRAPHS
Let $G = (V, E)$ be a simple graph of order $n$. The total dominating set is a subset $D$ of $V$ that every vertex of $V$ is adjacent to some vertices of $D$. The total domination number of $G$ is equal to minimum cardinality of total dominating set in $G$ and denoted by $gamma_t(G)$. The total domination polynomial of $G$ is the polynomial $D_t(G,x)=sum d_t(G,i)$, where $d_t(G,i)$ is the numbe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discussiones Mathematicae Graph Theory
دوره 28 شماره
صفحات -
تاریخ انتشار 2008